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ABSTRACT: In the present paper we establish a common fixed point theorem for non contractive mapping
in rational expression in Banach space. Our result is motivated by many authors.
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I. INTRODUCTION AND PRELIMINARIES

It is well known that a Banach space is a linear space
which is also in a special way a complete metric space.
The combination of algebraic and metric structures
opens up the possibility of studying linear
transformation of one Banach space into another which
has the additional property of being continuous. A
normed linear space is a linear space N in which to each
vector z, there corresponds a real number denoted by

and called the norm of x in such a manner that

(i)

(ii)

(iii

The non negative real number is to be thought of

as the length of vector x. If we regard as a real

function defined on N. It is easy to verify that the
normed function is called norm on N. It is easy to verify
that the normed linear space N is a metric space w.r.to

the metric d defined by d(x, y) = . A Banach

space is a complete normed linear space.

II. MAIN RESULT

Theorem 1: Let K be the closed and convex subset of a
Banach space X. Let F, G, H and J be the four mapping
of K into itself such that
FG = GF, GH = HG, HJ = JH AND JF = FJ …(1)
F2 = I , G2 = I , H2 = I , J2 = I  (where I denotes the
identity mapping) …(2)

…(3)
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For every x, y Є K and 0 ≤ α, β, such that 7α + 4β + 4 < 8 …(4)
Then there exists at least one fixed point x0 of F, G, H, and J.
Further if α + 2 < 2

Then x0 is the common fixed point of F, G, H and J.

PROOF: From equation 1 and 2 it follows that (FGHJ)2 = I, (where I is the identity mapping).
We have

Now if G(x) = V and G(y) = W then,

Where (FGHJ)2 = I and 7α + 4β + 4 < 8

Now to show that F, G, H, J has a fixed point x0 in K.
Therefore let x be a point in the Banach space X, then taking
Y = ½ (S + I) x
And t = S(y)
U = 2y – t

Now

…(5)
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Again
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…(6)

Again
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…(7)

Now

…(8)
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Thus from 5, 6, 7 and 8 we have

…(9)

Where

< 1

Since 7α + 4β + 4 < 8

Now let FGHJ = ½(S+I) x, then for every x Є X

From 9 and by definition of q we claim that {(FGHN)n(x)} is a Cauchy’s sequence in X. By completeness {(FGHN)
n(x)} converges to some element x0 in X.

i.e.

Therefore is a fixed point of FGHJ.

FGHJ(x0) = x0

So, GHJ (FGHJ)( x0) = GHJ (x0)
Also J FGHJ (x0) = J (x0)
Or FGH (x0) = J(x0)
Now by using above results and equations 1, 2, 3, 4 we have,
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Since α + 2 < 2 it follows that J(x0) = x0

This shows x0 is a fixed point of J.
F(x0) = FGHJ(x0)
F(x0) = GH (x0)
Again

Which is a contradiction since α + 2 < 2

Hence it follows that F(x0) = x0

But F(x0) = GH(x0)
(x0) = GH(x0)
F(x0) =F GH(x0)
F(x0) = J(x0)
F(x0) = (x0)

Hence F(x0) = (x0) = J(x0)
Also     F(x0) = G(x0) and G(x0) = H(x0)
Therefore x0 is a common fixed point of FGHJ.
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Now to show the uniqueness of x0, we let y0 be any other common fixed point of FGHJ then by using

+ γ

Since

Therefore

Since α+2γ<2

Hence is the unique fixed point of F, G, H, and J.

This completes the proof of the theorem.
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